

Application Notes of

Transparent HTTP TunnelTransparent HTTP TunnelTransparent HTTP TunnelTransparent HTTP Tunnel

Version 1.0b

2008/01/21

www.vivotek.com

ATD Document Template

 2

ATD Document Template

© 2008 VIVOTEK INC. All Right Reserved

VIVOTEK may make changes to specifications and product descriptions at any time,

without notice.

The following is trademarks of VIVOTEK INC., and may be used to identify VIVOTEK

products only: VIVOTEK. Other product and company names contained herein may

be trademarks of their respective owners.

No part of this publication may be reproduced or utilized in any form or by any

means, electronic or mechanical, including photocopying and microfilm, without

permission in writing from VIVOTEK INC.

Revision History

Version Issue date Editor Comment

1.0a 2007/08/16 David Liu Make first draft.
1.0b 2008/01/21 David Liu Revise the URI of UART tunnel.

ATD Document Template

 3

Table of Contents

Introduction... 4

Feature ... 5

Mechanism of HTTP tunnel establishment .. 6

Command format ... 10

Appendix: ... 11

1. The flow to set up http tunnel ...11

ATD Document Template

 4

Introduction

This document describes the usage and mechanism of tunnel establishment of UART HTTP

tunnel. Originally, client can control video server/network camera via CGI commands. This method is

not very real time because the overhead of TCP connection establishment of each CGI command is

considerable. On the other hand, HTTP tunneled connection can be consistent so that TCP connection

won’t be established each time a message would be delivered. Also, HTTP connection can be the most

traversable to firewall and compliant to HTTP authentication if security issue is concerned. Thus, the

video server/network camera can be managed more efficiently and systematically.

The figure below shows the application scenario of UART tunnel.

Internet

UART tunnel client

UART tunnel

daemon

Device controlled by RS-232/RS-485

HTTP GET and POST

session sockets

RS-232/RS-485 signal

HTTP server

ATD Document Template

 5

Feature

 UART tunnel daemon has the following features.

� Support one tunnel client at one time

� Use a FIFO queue to store incoming UART commands

� Able to send response from UART device to the tunnel client

� The target UART device can be updated without establishing another HTTP tunnel

ATD Document Template

 6

Mechanism of HTTP tunnel establishment

The HTTP tunneled connections use the capability of HTTP’s GET and POST methods to carry

an indefinite amount of data in their reply and message body respectively. Generally, the client makes

an HTTP GET request to the server to open the one way connection of server-to-client. Client can use

this connection to receive data from server. Then the client makes a HTTP POST request to the server

to open the one way connection of client-to-server. Client can use this connection to send data to

server. Server will bind these 2 paired connections to form a virtual full-duplex connection makes it

possible to send and receive data from one client.

 To work with HTTP tunneled connection, client must

(1) Establish one TCP socket to server (download socket) and send GET HTTP message

(2) Receive 200 OK from server

(3) Establish the other TCP socket to server (upload socket) and send POST HTTP message

(4) Receive tunnel status string in download socket (“HTTP tunnel accept=1”) to confirm one

pair of tunneled sockets are ready

(5) Client is ready to send data in upload socket and receive reply in download socket

For example:

From client to server (in download socket)

GET /cgi-bin/operator/uartchannel.cgi HTTP /1.0

User-Agent: TunnelClient

x-sessioncookie: 5AasdGTHfgjwsqDdSF33

Accept: application/x-vvtk-tunnelled

Pragma: no-cache

Cache-Control: no-cache

Connection: Keep-Alive

Client Server
Data (POST)

Data (GET)

ATD Document Template

 7

To make HTTP tunnel works optimally:

• Be made using HTTP version 1.0

• Include in the header an x-sessioncookie directive whose value is a globally unique

identifier (GUID). The GUID makes it possible for the server to unambiguously bind the

two connections.

• In POST requests, the application/x-vvtk-tunneled MIME type for both the Content-Type

and Accept directives must be specified; this MIME type reflects the data type that is

expected and delivered by the client and server.

From server to client (in download socket)

HTTP/1.1 200 OK

Content-Type: application/x-vvtk-tunnelled

Date: Sun, 9 Jan 1972 00:00:00 GMT

Cache-Control: no-store

Pragma: no-cache

x-server-ip-address: 168.95.2.32

Server: Boa/0.94.14rc21

Accept-Ranges: bytes

Connection: close

When the server receives an HTTP GET request from a client, it must respond with a reply

whose header specifies the application/x-rtsp-tunneled MIME type for both the Content-Type and

Accept directives.

Server reply headers may optionally include the Cache-Control: no-store and Pragma: no-cache

directives to prevent HTTP proxy servers from caching the transaction. It is recommended that

implementations honor these headers if they are present.

The Date directive specifies an arbitrary time in the past. This keeps proxy servers from caching

the transaction.

Server clusters are often allocated connections by a round-robin DNS or other load-balancing

algorithm. To insure that client requests are directed to the same server among potentially several

servers in a server farm, the server may optionally include the x-server-ip-address directive

followed by an IP address in dotted decimal format in the header of its reply to a client’s initial

GET request. When this directive is present, the client must direct its POST request to the

specified IP address regardless of the IP address returned by a DNS lookup.

From client to server (in upload socket)

ATD Document Template

 8

POST /cgi-bin/operator/uartchannel.cgi HTTP/1.1

Expires: Sun, 9 Jan 1972 00:00:00 GMT

x-sessioncookie: 5AasdGTHfgjwsqDdSF33

Pragma: no-cache

Cache-Control: no-cache

Content-Length: 32767

User-Agent: TunnelClient

Connection: Keep-Alive

From server to client (in download socket)

HTTP tunnel accept=1

The sample client POST request includes three optional header directives that are present to

control the behavior of HTTP proxy servers:

• The Pragma: no-cache directive tells many HTTP 1.0 proxy servers not to cache the

transaction.

• The Cache-Control: no-cache directive tells many HTTP 1.1 proxy servers not to cache the

transaction.

• The Expires directive specifies an arbitrary time in the past. This directive is intended to

prevent proxy servers from caching the transaction.

Server will check the correct URI and matching x-sessioncookie in the GET and POST message to

bind tunneled sockets. Therefore there must be a header of x-sessioncookie with the same string in

both GET and POST message for server to check. In the POST message, header of Content-Length is

used to keep the POST connection alive by marking large amount of data to upload (32767 bytes)

Some HTTP proxies might cache POST message. Since client send a POST request with

Content-length 32767, sometimes HTTP proxy will not forward any data until certain amount of data

is coming. To detect this behavior of HTTP proxy, the tunnel status string is used to confirm the

success of tunnel socket binding. If tunnel status string is “HTTP tunnel accept=0”, this means server

fail to binding the GET message due to time out of POST message. In this case, client should

teardown the paired sockets and re-establishes the paired sockets by “normal POST”

In HTTP tunnel mode, client won’t disconnect the tunneled sockets actively because the advantage

of consistent connection with server will make information exchange more efficiently. However, in

the above scenario, client will need to establish a new TCP socket each time to send a POST message

with upload data as message body and disconnect TCP connection after finishing transmission. In the

mean time, client still keeps GET (download socket) alive. This way can avoid HTTP proxy server to

ATD Document Template

 9

cache the upload message from client. Of course each POST message comes with the same

x-sessioncookie header. This is different from tunneled socket which got 2 consistent connections for

upload and download data. In this scenario, only download connection is consistent, the other one will

be re-established each time a new data is ready to send (upload) from client. In this case, if the client

wants to tear down the tunnel session, he should send the normal POST command by replacing the

URI by “/cgi-bin/operator/uartchannel.cgi?connect=close”. The HTTP tunnel will close the current

session and wait for next connection.

After HTTP tunneled sockets are established successfully, client is ready to send control, event

subscribe/unsubscribe messages and receive event notify via the tunneled sockets. All the following

control or event messages in the upload/POST tunneled sockets should be base64 encoded to traverse

HTTP proxy.

The client is able to change the target UART device by issuing one POST request which replaces

the original URI by “/cgi-bin/operator/uartchannel.cgi?channel=N”, where N is the target UART

channel number. The server will update the target UART channel respectively. Please note that the

x-session cookie should be the same as the one of current session.

For detail about tunnel establishment, please refer to the appendix of this document.

ATD Document Template

 10

Command format

The tunnel client should send binary UART commands encoded in base64 format through POST

socket. The UART tunnel will decode the message and transparently forward these commands. If

there are responses received from UART device, the UART tunnel will also forward them to the

tunnel client. The response messages are not base64 encoded.

ATD Document Template

 11

Appendix:

1. The flow to set up http tunnel

ATD Document Template

 12

Time axis

Http client Http server

“GET” http
connection setup

“POST” http connection setup (use
Content-Length=32767 first time)

POST meaningless data like
“channel=%d”, ASCII modeASCII modeASCII modeASCII mode

Server recvServer recvServer recvServer recv () () () () timeout timeout timeout timeout
value value value value = = = = 10 10 10 10 secondssecondssecondsseconds

Client recvClient recvClient recvClient recv () () () () timeout timeout timeout timeout
value value value value = = = = 15 15 15 15 secondssecondssecondsseconds

-If “http tunnel accept=0”or recv()
timeout then turning to normal POST.

-Re-setup GET GET GET GET and POST POST POST POST connection,
POST Content-Length is equal to real
data length.

-If “http tunnel accept=1”means
tunnel setup OK then send binary data
with base64 encoding.

GET connection reply tunnel setup
result “http tunnel accept=%d”,

ASCII modeASCII modeASCII modeASCII mode

Binary data with
base64 encoding

Blue line: GET connection

Green line: POST connection

(cgi…?channel=%d)

Title 2

<End of document>

